-
- S. Reich and I. Shafrir, On the method of successive approximations for nonexpansive mappings, Nonlinear and Convex Analysis, Marcel Dekker, New York, 1987, 193-201.
- S. Reich and I. Shafrir, The asymptotic behavior of firmly nonexpansive mappings, Proc. Amer. Math. Soc. 101 (1987), 246-250.
- I. Shafrir, A note on the minimum property, Proc. Amer. Math. Soc. 102 (1988), 490-492.
- I. Shafrir, On the averages of nonexpansive iterations in Hilbert space, J. Math. Anal. Appl. 145 (1990), 566-572.
- S. Reich and I. Shafrir, Nonexpansive iterations in hyperbolic spaces, Nonlinear Analysis 15 (1990), 537-558.
- I. Shafrir, The approximate fixed point property in Banach and hyperbolic spaces, Israel J. Math. 71 (1990), 211-223.
- I. Shafrir, Theorems of ergodic type for ρ-nonexpansive mappings in the Hilbert ball , Ann. Math. Pura Appl., Vol. CLXIII (1993), 313-327.
- I. Shafrir, Common fixed points of commuting holomorphic mappings in the product of $n$ Hilbert balls, Michigan Math. J. 39 (1992), 281-287.
- S. Reich and I. Shafrir, An existence theorem for a difference inclusion in general Banach spaces , J. Math. Anal. Appl., vol. 160, No. 2 (1991), 406-412.
- J. Borwein, S. Reich and I. Shafrir, Krasnoselski-Mann iterations in normed spaces, Can. Math. Bull. Vol. 35 (1992), 21-28.
- I. Shafrir, Coaccretive operators and firmly nonexpansive mappings in the Hilbert ball, Nonlinear Analysis 18 (1992), 637-648.T. Rivière and I. Shafrir, Asymptotic analysis of minimizing harmonic maps of regions bounded by two circles, C.R. Acad. Sci. Paris, t. 313 (1991), 503-508.I. Shafrir, A deformation lemma , C.R. Acad. Sci. Paris, t. 313 (1991), p.599-602.
- I. Shafrir, A Sup+Inf inequality for the equation -Δu=V eu , C.R. Acad. Sci. Paris, t. 315 (1992), p.159-164.
- H. Brezis, Y. Li and I. Shafrir, A Sup+Inf inequality for an elliptic equation involving exponential nonlinearity , J. Functional Analysis, Vol. 115 (1993), 344-358.
- S. Kaniel and I. Shafrir, A new symmetrization method for vector valued maps, C.R Acad. Sci. Paris, t. 315 (1992), p. 413-416.
- E. Sandier and I. Shafrir, On the symmetry of minimizing harmonic maps in $n$ dimensions , Differential and Integral Equations 6 (1993), p. 1531-1541.
- E. Sandier and I. Shafrir, On the uniqueness of minimizing harmonic maps with values in the closed hemisphere , Calculus of Variations and PDE 2(1994), 113-122.
- I. Shafrir, Remarks on solutions of $-\Delta u=(1-|u|^2)u$ in $\R^2$, C. R Acad. Sci. Paris, t. 318 (1994), 327-331.
- Y. Li and I. Shafrir, Blow up analysis for solutions of $-\Delta u_n=V_ne^{u_n}$ in dimension two , Indiana Univ. Math. J. 43 (1994), 1255-1270.
- Z. C. Han and I. Shafrir, Lower bounds for the energy of $S^1$-valued maps in perforated domains, J. d’Anal. Math. 66 (1995), 295-305.
- M. Chipot, M. Fila and I. Shafrir, On the solutions to some elliptic equations with nonlinear Neumann boundary conditions , Advances in Diff. Equations 1 (1996), 91-110.
- I. Shafrir, $L^{\infty}$-approximation for minimizers of the Ginzburg-Landau functional , C. R. Acad. Sci. Paris, t. 321 (1995), 705-710.
- N. André and I. Shafrir, Minimization of a Ginzburg-Landau functional with weight , C. R. Acad. Sci. Paris, t. 321 (1995), 999-1004.
- M. Chipot, I. Shafrir and G. Wolansky, On the solutions of Liouville systems, J. of Differential Equations 140 (1997), 59-105.
- N. André and I. Shafrir, Asymptotic behavior of minimizers for the Ginzburg-Landau functional with weight I , Arch. Rational. Mech. Anal. 142 (1998), 45-73.
- N. André and I. Shafrir, Asymptotic behavior of minimizers for the Ginzburg-Landau functional with weight II , Arch. Rational. Mech. Anal. 142 (1998), 75-98.
- M. Chipot, M. Chleb\’\i k, M. Fila and I. Shafrir, Existence of positive solutions of a semilinear elliptic equation in Rn+ with a nonlinear boundary condition, J. Math. Anal. and Appl. 223 (1998), 429-471.
- N. Andre and I. Shafrir, Minimization of a Ginzburg-Landau type functional with nonvanishing Dirichlet boundary condition , Calculus of Variations and PDE 7 (1998), 191-217.
- N. Andre and I. Shafrir, On nematics stabilized by a large external field , Reviews in Mathematical Physics 11 (1999), 653-710.
- S. Gueron and I. Shafrir, On a discrete variational problem involving interacting particles, SIAM J. Appl. Math. 60 (1999), 1-17.
- H. Brezis, M. Marcus and I. Shafrir, Extermal functions for Hardy’s inequality with weight, J. Funct. Anal. 171 (2000), 177-191.
- I. Shafrir, Asymptotic behaviour of minimizing sequences for Hardy’s inequality, Comm. Contemp. Math. 2 (2000), 151-189.
- M. Marcus and I.Shafrir, An eigenvalue problem related to Hardy’s Lp inequality, Ann. Scuola. Norm. Sup. Pisa. Cl. Sc. 29 (2000), 581-604.
- I. Shafrir and G. Wolansky, Moser-Trudinger type inequalities for systems in two dimensions, C. R. Acad. Sci. Paris Ser.I Math. 333 (2001), 439-443.
- A. Poliakovsky and I. Shafrir, A comparison principle for the p-Laplacian, in Proceedings of the 4th European Conference on Elliptic and Parabolic Problems-Rolduc and Gaeta 2001, World Scientific (2002), 243-252.
- N. Andre and I. Shafrir, On a singular perturbation problem involving the distance to a curve, J. d’Anal. Math. 90 (2003), 337-396.
- N. Andre and I. Shafrir, On the minimizers of a Ginzburg-Landau type energy when the boundary condition has zeros, Advances in Diff. Equations 9(2004), 891-960.
- I. Shafrir, On a class of singular perturbation problems (87 pages), in Handbook of Differential Equations, Section “Stationary Partial Differential Equations”, edited by Michel Chipot and Pavol Quittner, Elsevier/North Holland, 2004, p. 297-383.
- S. Gueron and I. Shafrir, A weighted Erdos-Mordell inequality for polygons, The American Mathematical Monthly 112 (2005), 257-264.
- A. Poliakovsky and I. Shafrir, Uniqueness of positive solutions for singular problems involving the p-Laplacian, Proc. Amer. Math. Soc. 133 (2005), 2549-2557.
- I. Shafrir and G. Wolansky, Moser-Trudinger and logarithmic HLS inequalities for systems , J. Euro. Math. Soc. 7 (2005), 413-448.
- I. Shafrir and G. Wolansky, The logarithmic HLS inequalities for systems on compact manifolds, J. Func. Anal. 227 (2005), 200-226.
- R. Hadiji and I. Shafrir , Minimization of a Ginzburg-Landau type energy with potential having a zero of infinite order, Differential Integral Equations 19 (2006), 1157-1176.
- J. Rubinstein and I. Shafrir, On the distance between homotopy classes of $S^1$-valued maps in multiply connected domains, Israel J. Math. 160(2007), 41-59.
- N. Andre and I. Shafrir, On a singular perturbation problem involving a “circular-well” potential, Trans. Amer. Math. Soc. 359 (2007), 4729-4756.
- M. Chipot, I. Shafrir, V. Valente and G. Vergara Caffarelli, A nonlocal problem arising in the study of Magneto-Elastic interactions, Boll. Un. Mat. Ital. (9) 1 (2008), 197-221.
- N. Andre and I. Shafrir, On a vector-valued singular perturbation problem on the sphere, in Recent Advances In Nonlinear Analysis, Proceedings of the International Conference on Nonlinear Analysis, Hsinchu, Taiwan, 20 – 25 November 2006, World Scientific 2008
- M. Chipot, I. Shafrir, V. Valente and G. Vergara Caffarelli, On a hyperbolic-parabolic system arising in magnetoelasticity, J. Math. Anal. Appl. 352 (2009), 120-131.
- Y. Almog, L. Berlyand, D. Golovaty and I. Shafrir, Global minimizers for a p-Ginzburg-Landau-type energy in R^2, J. Funct. Anal. 256 (2009), 2268-2290.
- Y. Almog, L. Berlyand, D. Golovaty and I. Shafrir, Radially symmetric minimizers for a p-Ginzburg-Landau type energy in R2, Calc. Var. PDE 42(2011), 517-546.
- N. Andre and I. Shafrir, On a minimization problem with a mass constraint involving a potential vanishing on two curves, Israel J. Math. 186 (2011), 97-124.
- Y. Almog, L. Berlyand, D. Golovaty and I. Shafrir, On the limit $p\to\infty$ of global minimizers for a p-Ginzburg-Landau-type energy, Ann. Inst. H. Poincare Anal. Non Lineaire 30 (2013), 1159-1174.
- M. Chipot, P. Roy and I. Shafrir, Asymptotics of eigenstates of elliptic problems with mixed boundary data on domains tending to infinity,
Asymptot. Anal. (2013), , 199-227.
- N. Andre and I. Shafrir, On a minimization problem with a mass constraint in dimension two, Indiana Univ. Math. J. 63 (2014), 419-445.
- I. Shafrir and I. Yudovich, An infinite horizon variational problem on an infinite strip, Variational and Optimal Control Problems on Unbounded Domains:
A Workshop in Memory of Arie Leizarowitz, Contemporary Mathematics, Vol. 619, 2014, AMS.
- S. Levi and I. Shafrir, On the distance between homotopy classes of maps between spheres, J. Fixed Point theory 15 (2014), 501-518.
- Y. Almog, L. Berlyand, D. Golovaty and I. Shafrir, Existence and stability of superconducting solutions for the Ginzburg-Landau equations in the presence of weak electriccurrents, J. Math. Phys. 56 (2015), no. 7, 071502, 13 pp.
- H. Brezis, P. Mironescu and I. Shafrir, Distances between classes of sphere-valued Sobolev maps, C. R. Math. Acad. Sci. Paris 354 (2016), 677-684.
- H. Brezis, P. Mironescu and I. Shafrir, Distances between homotopy classes of Ws,p(SN;SN), ESAIM COCV 22 (2016), 1204-1235.
- E. Sandier and I. Shafrir, Small energy Ginzburg-Landau minimizer in R3 , J. Funct. Anal. 272 (2017), 3946-3964.
- P. Mironescu and I. Shafrir, Asymptotic behavior of critical points of an energy involving a loop-well potential, Comm. Partial Differential Equations 42 (2017), 1837-1870.
- H. Brezis, P. Mironescu and I. Shafrir, Distances between classes in W1,1(Ω;S1), Calc. Var. Partial Differential Equations 57 (2018), no. 1, Art. 14, 32 pp.
- I. Shafrir and D.Spector, Best constants for two families of higher order critical Sobolev embeddings, Nonlinear Anal. 177 (2018), 753–769.
- I. Shafrir, On the distance between homotopy classes in W1/p,p(S1;S1), Confluentes Mathematici 10 (2018), 125–136.
- H. Brezis, P. Mironescu and I. Shafrir, Radial extensions in fractional Sobolev spaces, Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Mat. RACSAM 113 (2019), 707–714.
- I. Shafrir, The best constant in the embedding of W N,1(RN) into L∞(RN), Potential Anal. 50 (2019), 581–590.
- Y. Almog, L. Berlyand, D. Golovaty and I. Shafrir, Existence of superconducting solutions for a reduced Ginzburg-Landau model in the presence of strong electric currents, SIAM J. Math. Anal. 51 (2019), 873–912.
- P. Mironescu and I. Shafrir, A uniform continuity property of the winding number of self-mappings of the circle, PAFA 5, 1199–1204, 2020.
- D. Golovaty and I. Shafrir, A variational singular perturbation problem motivated by Ericksen’s model for nematic liquid crystals, Arch. Ration. Mech. Anal. 241 (2021), no. 2,1009–1063.