List of Publications

    1. S. Reich and I. Shafrir, On the method of successive approximations for nonexpansive mappings, Nonlinear and Convex Analysis, Marcel Dekker, New York, 1987, 193-201.
    2. S. Reich and I. Shafrir, The asymptotic behavior of firmly nonexpansive mappings, Proc. Amer. Math. Soc. 101 (1987), 246-250.
    3. I. Shafrir, A note on the minimum property, Proc. Amer. Math. Soc. 102 (1988), 490-492.
    4. I. Shafrir, On the averages of nonexpansive iterations in Hilbert space, J. Math. Anal. Appl. 145 (1990), 566-572.
    5. S. Reich and I. Shafrir, Nonexpansive iterations in hyperbolic spaces, Nonlinear Analysis 15 (1990), 537-558.
    6. I. Shafrir, The approximate fixed point property in Banach and hyperbolic spaces, Israel J. Math. 71 (1990), 211-223.
    7. I. Shafrir, Theorems of ergodic type for ρ-nonexpansive mappings in the Hilbert ball , Ann. Math. Pura Appl., Vol. CLXIII (1993), 313-327.
    8. I. Shafrir, Common fixed points of commuting holomorphic mappings in the product of $n$ Hilbert balls, Michigan Math. J. 39 (1992), 281-287.
    9. S. Reich and I. Shafrir, An existence theorem for a difference inclusion in general Banach spaces , J. Math. Anal. Appl., vol. 160, No. 2 (1991), 406-412.
    10. J. Borwein, S. Reich and I. Shafrir, Krasnoselski-Mann iterations in normed spaces, Can. Math. Bull. Vol. 35 (1992), 21-28.
    11. I. Shafrir, Coaccretive operators and firmly nonexpansive mappings in the Hilbert ball, Nonlinear Analysis 18 (1992), 637-648.T. Rivière and I. Shafrir, Asymptotic analysis of minimizing harmonic maps of regions bounded by two circles, C.R. Acad. Sci. Paris, t. 313 (1991), 503-508.I. Shafrir, A deformation lemma , C.R. Acad. Sci. Paris, t. 313 (1991), p.599-602.
    12. I. Shafrir, A Sup+Inf inequality for the equation -Δu=V eu , C.R. Acad. Sci. Paris, t. 315 (1992), p.159-164.
    13. H. Brezis, Y. Li and I. Shafrir, A Sup+Inf inequality for an elliptic equation involving exponential nonlinearity , J. Functional Analysis, Vol. 115 (1993), 344-358.
    14. S. Kaniel and I. Shafrir, A new symmetrization method for vector valued maps, C.R Acad. Sci. Paris, t. 315 (1992), p. 413-416.
    15. E. Sandier and I. Shafrir, On the symmetry of minimizing harmonic maps in $n$ dimensions , Differential and Integral Equations 6 (1993), p. 1531-1541.
    16. E. Sandier and I. Shafrir, On the uniqueness of minimizing harmonic maps with values in the closed hemisphere , Calculus of Variations and PDE 2(1994), 113-122.
    17. I. Shafrir, Remarks on solutions of $-\Delta u=(1-|u|^2)u$ in $\R^2$, C. R Acad. Sci. Paris, t. 318 (1994), 327-331.
    18. Y. Li and I. Shafrir, Blow up analysis for solutions of $-\Delta u_n=V_ne^{u_n}$ in dimension two , Indiana Univ. Math. J. 43 (1994), 1255-1270.
    19. Z. C. Han and I. Shafrir, Lower bounds for the energy of $S^1$-valued maps in perforated domains, J. d’Anal. Math. 66 (1995), 295-305.
    20. M. Chipot, M. Fila and I. Shafrir, On the solutions to some elliptic equations with nonlinear Neumann boundary conditions , Advances in Diff. Equations 1 (1996), 91-110.
    21. I. Shafrir, $L^{\infty}$-approximation for minimizers of the Ginzburg-Landau functional , C. R. Acad. Sci. Paris, t. 321 (1995), 705-710.
    22. N. André and I. Shafrir, Minimization of a Ginzburg-Landau functional with weight , C. R. Acad. Sci. Paris, t. 321 (1995), 999-1004.
    23. M. Chipot, I. Shafrir and G. Wolansky, On the solutions of Liouville systems, J. of Differential Equations 140 (1997), 59-105.
    24. N. André and I. Shafrir, Asymptotic behavior of minimizers for the Ginzburg-Landau functional with weight I , Arch. Rational. Mech. Anal. 142 (1998), 45-73.
    25. N. And and I. Shafrir, Asymptotic behavior of minimizers for the Ginzburg-Landau functional with weight II , Arch. Rational. Mech. Anal. 142 (1998), 75-98.
    26. M. Chipot, M. Chleb\’\i k, M. Fila and I. Shafrir, Existence of positive solutions of a semilinear elliptic equation in Rn+  with a nonlinear boundary condition, J. Math. Anal. and Appl. 223 (1998), 429-471.
    27. N. Andre and I. Shafrir, Minimization of a Ginzburg-Landau type functional with nonvanishing Dirichlet boundary condition , Calculus of Variations and PDE 7 (1998), 191-217.
    28. N. Andre and I. Shafrir, On nematics stabilized by a large external field , Reviews in Mathematical Physics 11 (1999), 653-710.
    29. S. Gueron and I. Shafrir, On a discrete variational problem involving interacting particles, SIAM J. Appl. Math. 60 (1999), 1-17.
    30. H. Brezis, M. Marcus and I. Shafrir, Extermal functions for Hardy’s inequality with weight, J. Funct. Anal. 171 (2000), 177-191.
    31. I. Shafrir, Asymptotic behaviour of minimizing sequences for Hardy’s inequality, Comm. Contemp. Math.  2 (2000), 151-189.
    32. M. Marcus and I.Shafrir, An eigenvalue problem related to Hardy’s Lp inequality, Ann. Scuola. Norm. Sup. Pisa. Cl. Sc. 29 (2000), 581-604.
    33. I. Shafrir and G. Wolansky, Moser-Trudinger type inequalities for systems in two dimensions, C. R. Acad. Sci. Paris Ser.I Math. 333  (2001), 439-443.
    34. A. Poliakovsky and I. Shafrir, A comparison principle for the p-Laplacian, in Proceedings of the 4th European Conference on Elliptic and Parabolic Problems-Rolduc and Gaeta 2001, World Scientific (2002), 243-252.
    35. N. Andre and I. Shafrir, On a singular perturbation problem involving the distance to a curve, J. d’Anal. Math. 90 (2003), 337-396.
    36. N. Andre and I. Shafrir, On the minimizers of a Ginzburg-Landau type energy when the boundary condition has zeros, Advances in Diff. Equations 9(2004), 891-960.
    37. I. Shafrir, On a class of singular perturbation problems (87 pages), in Handbook of Differential Equations, Section “Stationary Partial Differential Equations”, edited by Michel Chipot and Pavol Quittner, Elsevier/North Holland, 2004, p. 297-383.
    38. S. Gueron and I. Shafrir, A weighted Erdos-Mordell inequality for polygons, The American Mathematical Monthly 112 (2005), 257-264.
    39. A. Poliakovsky and I. Shafrir, Uniqueness of positive solutions for singular problems involving the p-Laplacian, Proc. Amer. Math. Soc. 133 (2005), 2549-2557.
    40. I. Shafrir and G. Wolansky, Moser-Trudinger and logarithmic HLS inequalities for systems , J. Euro. Math. Soc. 7 (2005), 413-448.
    41. I. Shafrir and G. Wolansky, The logarithmic HLS inequalities for systems on compact manifolds, J. Func. Anal. 227 (2005), 200-226.
    42. R. Hadiji and I. Shafrir , Minimization of a Ginzburg-Landau type energy with potential having a zero of infinite order, Differential Integral Equations 19 (2006), 1157-1176.
    43. J. Rubinstein and I. Shafrir, On the distance between homotopy classes of $S^1$-valued maps in multiply connected domains, Israel J. Math. 160(2007), 41-59.
    44. N. Andre and I. Shafrir, On a singular perturbation problem involving a “circular-well” potential, Trans. Amer. Math. Soc. 359 (2007), 4729-4756.
    45. M. Chipot, I. Shafrir, V. Valente and G. Vergara Caffarelli, A nonlocal problem arising in the study of Magneto-Elastic interactions, Boll. Un. Mat. Ital. (9) 1 (2008), 197-221.
    46. N. Andre and I. Shafrir, On a vector-valued singular perturbation problem on the sphere, in Recent Advances In Nonlinear Analysis, Proceedings of the International Conference on Nonlinear Analysis, Hsinchu, Taiwan, 20 – 25 November 2006, World Scientific 2008
    47. M. Chipot, I. Shafrir, V. Valente and G. Vergara Caffarelli, On a hyperbolic-parabolic system arising in magnetoelasticity, J. Math. Anal. Appl. 352 (2009), 120-131.
    48. Y. Almog, L. Berlyand, D. Golovaty and I. Shafrir, Global minimizers for a p-Ginzburg-Landau-type energy in R^2, J. Funct. Anal. 256 (2009), 2268-2290.
    49. Y. Almog, L. Berlyand, D. Golovaty and I. Shafrir, Radially symmetric minimizers for a p-Ginzburg-Landau type energy in R2, Calc. Var. PDE 42(2011), 517-546.
    50. N. Andre and I. Shafrir, On a minimization problem with a mass constraint involving a potential vanishing on two curves, Israel J. Math. 186 (2011), 97-124.
    51. Y. Almog, L. Berlyand, D. Golovaty and I. Shafrir, On the limit $p\to\infty$  of global minimizers for a p-Ginzburg-Landau-type energy, Ann. Inst. H. Poincare Anal. Non Lineaire  30 (2013), 1159-1174.
    52. M. Chipot, P. Roy and I. Shafrir, Asymptotics of  eigenstates of elliptic problems  with mixed boundary data on domains tending to infinity,
      Asymptot. Anal. 
      (2013), , 199-227.
    53. N. Andre and  I. Shafrir,  On a minimization problem with a mass constraint in dimension two,  Indiana Univ. Math. J.  63 (2014), 419-445.
    54. I. Shafrir and I. Yudovich, An infinite horizon variational problem on an infinite strip, Variational and Optimal Control Problems on Unbounded Domains:
      A Workshop in Memory of Arie Leizarowitz, Contemporary Mathematics, Vol. 619, 2014, AMS.
    55. S. Levi and I. Shafrir, On the distance between homotopy classes of maps between spheres, J. Fixed Point theory 15 (2014), 501-518.  
    56. Y. Almog, L. Berlyand, D. Golovaty and  I. Shafrir, Existence and stability of superconducting solutions for the Ginzburg-Landau equations in the presence of weak electriccurrents, J. Math. Phys.  56 (2015), no. 7, 071502, 13 pp.
    57. H. Brezis, P. Mironescu and I. Shafrir,  Distances between classes of sphere-valued Sobolev maps, C. R. Math. Acad. Sci. Paris 354 (2016), 677-684.
    58. H. Brezis, P. Mironescu and I. Shafrir, Distances between homotopy classes of  Ws,p(SN;SN), ESAIM COCV 22 (2016), 1204-1235.
    59. E. Sandier and I. Shafrir, Small energy Ginzburg-Landau minimizer in R3 , J. Funct. Anal. 272 (2017), 3946-3964.
    60. P. Mironescu and I. Shafrir, Asymptotic behavior of critical points of an energy involving a loop-well potential, Comm. Partial Differential Equations 42 (2017), 1837-1870.
    61. H. Brezis, P. Mironescu and I. Shafrir, Distances between classes in W1,1(Ω;S1), Calc. Var. Partial Differential Equations 57 (2018), no. 1, Art. 14, 32 pp.
    62. I. Shafrir and D.Spector, Best constants for two families of higher order critical Sobolev embeddings, Nonlinear Anal. 177 (2018), 753–769.
    63. I. Shafrir, On the distance between homotopy classes in W1/p,p(S1;S1), Confluentes Mathematici 10 (2018), 125–136.
    64. H. Brezis, P. Mironescu and I. Shafrir, Radial extensions in fractional Sobolev spaces, Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Mat. RACSAM 113 (2019), 707–714.
    65. I. Shafrir, The best constant in the embedding of W N,1(RN) into L(RN), Potential Anal. 50 (2019), 581–590.
    66. Y. Almog, L. Berlyand, D. Golovaty and I. Shafrir, Existence of superconducting solutions for a reduced Ginzburg-Landau model in the presence of strong electric currents, SIAM J. Math. Anal. 51 (2019), 873–912.
    67. P. Mironescu and I. Shafrir, A uniform continuity property of the winding number of self-mappings of the circle, PAFA 5, 1199–1204, 2020.
    68. D. Golovaty and I. Shafrir, A variational singular perturbation problem motivated by Ericksen’s model for nematic liquid crystals, Arch. Ration. Mech. Anal. 241 (2021), no. 2,1009–1063.