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Abstract

Given a p > 2, we prove existence of global minimizers for a p-Ginzburg-
Landau-type energy over maps on R

2 with degree d = 1 at infinity. For the
analogous problem on the half-plane we prove existence of a global minimizer
when p is close to 2.

The key ingredient of our proof is the degree reduction argument that allows
us to construct a map of degree d = 1 from an arbitrary map of degree d > 1
without increasing the p-Ginzburg-Landau energy.

1 Introduction

For a given p > 2 consider the Ginzburg-Landau-type energy

Ep(u) =

∫

R2

|∇u|p +
1

2

(
1 − |u|2

)2
(1.1)

over the class of maps u ∈ W 1,p
loc (R2, R2) that satisfy Ep(u) < ∞ and have a degree

d “at infinity”. The last statement can be made precise by observing that any map
u ∈ W 1,p

loc (R2, R2) with Ep(u) < ∞ satisfies

• u ∈ Cα
loc(R

2, R2) where α = 1 − 2/p (Morrey’s lemma, [11]).

• lim|x|→∞ |u(x)| = 1 (Section 3 below).

Therefore, there exists an R > 0 such that the degree deg
(

u
|u| , ∂Br(0)

)
is well-

defined for every r ≥ R and is independent of r. We use this value as the definition
of the degree, deg(u).

For any integer d ∈ Z, introduce the class of maps

Ed =
{

u ∈ W 1,p
loc (R2, R2) : Ep(u) < ∞, deg(u) = d

}
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and define
Ip(d) = inf

u∈Ed

Ep(u) . (1.2)

The set Ed is nonempty, as can be readily seen, e.g., by verifying that the map
v(reiθ) = f(r)eidθ with

f(r) =

{
r, r < 1,

1, r ≥ 1,

is in Ed. A natural question then is whether the infimum in (1.2) is attained. Our
main result provides an affirmative answer when d = ±1—we are uncertain as to
whether this conclusion remains true for |d| ≥ 2.

Theorem 1. For d = ±1 there exists a map realizing the infimum Ip(d) in (1.2).

Note that the problem (1.2) is meaningless for the standard Ginzburg-Landau
energy E2 because it is not even clear how the class Ed should be defined when
p = 2 and d 6= 0. In fact, by a result of Cazenave (described in [7]), the constant
solutions u = eiα with α ∈ R are the only finite energy solutions of the associated
Euler-Lagrange equation, −∆u = (1 − |u|2)u. Clearly, the degree of these solutions
is zero. The natural questions for p = 2 are concerned with local minimizers, i.e.,
those maps that are minimizers of the energy functional E2 on BR(0) with respect to
C∞

0 (BR(0))-perturbations for every R > 0. These questions were first addressed in
[7]. Subsequently, Mironescu [10], relying on a result of Sandier [12], characterized
these local minimizers completely by showing that, up to a translation and a rotation,
they are all of the form f(r)eiθ. Here f(r) is the unique solution of the ODE obtained
by imposing rotational invariance on the Euler-Lagrange equation.

Next we turn our attention to the analogous problem on the upper half-plane

R
2
+ = {(x1, x2) ∈ R

2 |x2 > 0} .

Once again, for p > 2, we are interested in minimizers of the energy functional

Ep(u) =

∫

R
2
+

|∇u|p +
1

2
(1 − |u|2)2 ,

but this time over all maps in W 1,p
loc (R2

+, R2), satisfying the boundary condition

|u(x1, 0)| = 1 , ∀x1 ∈ R , (1.3)

along with a degree condition at infinity. Here the definition of the degree can
be given by a small modification of the argument we employed in the R

2-case: we
observe that the degree of u

|u| on ∂(BR(0)∩R
2
+) does not depend on R for sufficiently

large R and define deg(u) to be this integer value.
For any d ∈ Z we set

E+
d = {u ∈ W 1,p

loc (R2
+, R2) : |u(x1, 0)| = 1, Ep(u) < ∞, deg(u) = d} (1.4)
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and define
I+
p (d) = inf

u∈E+
d

Ep(u) . (1.5)

Again, we study the question of existence of a minimizer for (1.5), but we are only
able to prove a result analogous to Theorem 1 when p is sufficiently close to 2.

Theorem 2. For d = ±1 there exists p0 > 2 such that for all p ∈ (2, p0) the infimum

I+
p (d) is attained.

Recall that minimization problems with degree boundary conditions for the clas-
sical Ginzburg-Landau energy (p = 2) on perforated bounded domains were studied
in [1]-[4]. Our study of the problem on a half-plane was motivated by the results
in [2, 3] regarding the behavior of minimizing sequences when the H1− capacity
of the domain is sufficiently small and the minimizing sequences develop vortices
approaching the boundary of the domain.

The main tool we use in the proofs of Theorems 1 and 2 is a “degree reduction”
proposition proved in Section 2. In this proposition we show how we can transform
any given map u of degree D ≥ 2 (on either R

2 or R
2
+) to a new map ũ of degree

D = 1 so that Ep(ũ) = Ep(u). Loosely speaking, the proposition establishes the
intuitively clear result that “less degree implies less energy” for the infima.

In Section 3 we use the degree reduction argument to prove Theorem 1. In
Section 4 we study the limit p → 2+ in the half-plane case and obtain some results
needed to prove Theorem 2. The proof of this theorem is given in Section 5.

Acknowledgment. The research of the authors was supported by the following
resources: Y.A. by NSF grant DMS 0604467, L.B. by NSF grant DMS-0708324,
D.G. by NSF grant DMS-0407361 and I.S. by the Steigman Research Fund.

2 A key proposition

Here we prove a key proposition that is the main ingredient of the proof of Theorem 1.
A variant of it will also be used in the proof of Theorem 2. Before stating the
proposition, we provide some basic properties of maps with finite energy.

Lemma 2.1. Let u ∈ W 1,p
loc (R2, R2) be any map with Ep(u) < ∞. Then u ∈

Cα(R2, R2) with α = 1 − 2/p and

lim
|x|→∞

|u(x)| = 1 . (2.1)

The analogous result holds for u ∈ W 1,p
loc (R2

+, R2) satisfying Ep(u) < ∞.

Proof. The first assertion is a direct consequence of Morrey’s inequality [11] which
asserts that, upon modifying u on a set of measure zero,

|u(x) − u(y)| ≤ C‖∇u‖Lp(R2)|x − y|α, ∀x, y ∈ R
2 , (2.2)
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for some constant C > 0 depending only on p. To prove (2.1) we employ the same
argument used in the proof of the analogous result [7] in the case p = 2. Suppose
that there exists a sequence |x(n)| → ∞ with

∣∣u
(
x(n)

)∣∣ ≤ 1 − δ for some δ > 0.
Then, by (2.2), ∫

B1(x(n))

(
1 − |u|2

)2 ≥ η > 0 ,

for all n and some constant η. But this contradicts our assumption that
∫

R2

(
1 − |u|2

)2 ≤ Ep(u) < ∞ .

In the case of u ∈ W 1,p
loc (R2

+, R2) it suffices to extend u to a map U ∈ W 1,p
loc

(
R

2, R2
)

via reflection w.r.t. the x2-axis, and to apply the previous argument.

Next we state and prove the main result of this section.

Proposition 1. Let D ≥ 2 be an integer. Then, for each u ∈ ED, there exists ũ ∈ E1

such that Ep(ũ) = Ep(u) and

ũ1(x) = u1(x) and |ũ2(x)| = |u2(x)|, ∀x ∈ R
2 . (2.3)

Proof. By Lemma 2.1 there exists R0 > 0 such that |u(x)| ≥ 1
2 for |x| ≥ R0.

By Fubini theorem we can find r ∈ (R0, R0 + 1) such that
∫
∂Br(0) |∇u|p ≤ Ep(u).

Therefore, by Hölder inequality,
∫

∂Br(0)

∣∣∣∣
∂u

∂τ

∣∣∣∣ dτ < ∞ . (2.4)

Here ∂u
∂τ denotes the tangential derivative of u along ∂Br(0).

We start by constructing a map ũ ∈ W 1,p(Br(0), R
2) (of course, also ũ ∈

C(Br(0), R
2)) satisfying (2.3) on Br(0) and such that deg (ũ, ∂Br(0)) = 1. Thus,

until stated otherwise, we consider u on Br(0) only. Since u = (u1, u2) is continuous,
we can represent the set Br(0)∩{u2 6= 0} as a union of its (countably many) disjoint
components,

{u2 6= 0} ∩ Br(0) =
⋃

j∈I+

ω+
j ∪

⋃

j∈I−
ω−

j ,

where {ω+
j }j∈I+ are the components of the set Br(0) ∩ {u2 > 0}, while {ω−

j }j∈I−
are the components of Br(0) ∩ {u2 < 0}. Each index set I± is either a finite set of
integers {1, . . . , N}, or the set N of all positive integers. Note that both I+ and I−
are nonempty because, contrary to our assumption, the degree of u is zero if u takes
values in a half-plane. Denote

u+
2,j = χω+

j
|u2|, ∀j ∈ I+ and u−

2,j = χω−
j
|u2|, ∀j ∈ I− .

Then, on Br(0)

u2 =
∑

j∈I+

u+
2,j −

∑

j∈I−
u−

2,j . (2.5)
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Next we claim that for each ω±
j ,

u±
2,j ∈ W 1,p(Br(0)) . (2.6)

We pay special attention to cases where ∂ω±
j ∩ ∂Br(0) is nonempty. We begin by

applying a standard argument (cf. [8]) to construct an extension w of u2 such that
w ∈ Cc(R

2)∩W 1,p(R2). Let Q denote the connected component of the set {w 6= 0}
that contains ω±

j . Then, w ∈ W 1,p
0 (Q) ∩ C(Q), and by defining an extension map

w̃ which is identically zero on R
2 \ Q we obtain that w̃ ∈ W 1,p(R2) ∩ Cc(R

2) (note
that no regularity assumption on Q is required for this to hold, see Remarque 20
after Théorème IX.17 in [6]). Since w̃ = χω±

j
u2 on Br(0), we deduce immediately

that (2.6) holds.
It follows from (2.6) that for every pair of maps, γ+ : I+ → {−1,+1}, γ− : I− →

{−1,+1} the function

u
(γ+,γ−)
2 =

∑

j∈I+

γ+(j)u+
2,j +

∑

j∈I−
γ−(j)u−

2,j (2.7)

belongs to W 1,p(Br(0)) and the map ũ = (u1, u
(γ+,γ−)
2 ) satisfies (2.3) on Br(0). We

now show that it is possible to choose γ+ and γ− in such a way that the resulting ũ
will have degree equal to 1.

First, we claim that one can assume that I+ is finite. Indeed, if I+ = N, then

we define a sequence of maps v(N) = (v
(N)
1 , v

(N)
2 ) by

v
(N)
2 =

N∑

j=1

u+
2,j −

∞∑

j=N+1

u+
2,j −

∑

j∈I−
u−

2,j and v
(N)
1 = u1 ,

where N ≥ 1. By dominated convergence, it can be easily seen that v(N) → u in
W 1,p(Br(0)), hence also in C(Br(0)). By the continuity of the degree, we obtain

lim
N→∞

deg
(
v(N), ∂Br(0)

)
= deg(u, ∂Br(0)) = D .

Therefore, for sufficiently large N , we have deg
(
v(N)

)
= D. Since we can replace

u by v(N), the claim follows. We will assume in the sequel that u is such that
I+ = {1, . . . , N} for some N ∈ N.

Next, we claim that one can effectively assume that N = 1. From now on, we
assume the positive orientation (i.e., counter clockwise) of ∂Br(0). The map U = u

|u|
is well-defined on ∂Br(0) and, thanks to (2.4), it belongs to W 1,1(∂Br(0), S

1). For
j = 1, ..., N set

Aj = ω+
j ∩ ∂Br(0) and aj =

∫

Aj

U ∧ Uτ dτ ,

so that aj equals the change of phase of U on Aj . Further, denote

b =

∫

∂Br(0)\
N
S

j=1
Aj

U ∧ Uτ dτ .

5



Clearly

2πD = b +
N∑

j=1

aj . (2.8)

But since replacing u = u1 + iu2 by its complex conjugate ū = u1 − iu2 on
N⋃

j=1
ω+

j

(without changing u elsewhere) would result with a map of degree zero (since it
takes its values only in the lower half-plane), we must also have

0 = −
N∑

j=1

aj + b . (2.9)

From (2.8)–(2.9) we get

b =

N∑

j=1

aj = πD . (2.10)

It follows from (2.10) that there exists j0 for which

b + aj0 −
∑

j 6=j0

aj = 2aj0 > 0 . (2.11)

From (2.11) we deduce that the map v = (v1, v2) ∈ W 1,p(Br(0)) with v1 = u1

and v2 given by:

v2(x) =

{
−|u2(x)| x /∈ ω+

j0
,

u2(x) x ∈ ω+
j0

,

has degree d > 0. If d = 1 then the proposition is proved, thus we assume in the
sequel that d ≥ 2.

Consider the set Ω− = {x ∈ Br(0) : v2(x) < 0} and write it as a disjoint
countable union of its components,

Ω− =
⋃

j∈J
Ω−

j .

Set
V =

v

|v| on ∂Br(0) .

By (2.4) ∫

∂Br(0)

∣∣∣
∂V

∂τ

∣∣∣ dτ < ∞ . (2.12)

Define

G+ = {x ∈ ∂Br(0) : v2(x) > 0} and G− = {x ∈ ∂Br(0) : v2(x) < 0} .

As above ∫

G+

V ∧ Vτ dτ =

∫

G−

V ∧ Vτ dτ = πd . (2.13)
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We can write each of G+ and G− (which are (relatively) open subsets of ∂Br(0)) as
a countable union of open segments on the circle ∂Br(0):

G+ =
⋃

i∈K+

J i
+ and G− =

⋃

i∈K−

J i
−

Clearly, each segment J i
− satisfies

J i
− ⊂ Ω−

ζ(i) for a unique ζ(i) ∈ J . (2.14)

Of course, also J i
+ ⊂ ω+

j0
for each i. Since for each segment J i

±, v2(∂J i
±) = 0, i.e.,

V (∂J i
±) ⊂ {−1, 1}, we clearly have

∫

Ji
±

V ∧ Vτ dτ ∈ {−π, 0, π} . (2.15)

Invoking (2.12) we deduce that the number of intervals J i
± for which

∫
Ji
±

V ∧Vτ dτ 6= 0

is finite. We denote them (ordered according to the positive orientation) by

Jj1
+ , . . . , J

jκ+
+ and J l1

− , . . . , J
lκ−

− .

Then our assumption that d ≥ 2 in conjunction with (2.15) and (2.13) implies that
κ+ ≥ 2.

Given an s = 1, . . . , κ+, denote by r exp(iθ1,js) and r exp(iθ2,js) the end points

of Jjs
+ so that

Jjs
+ = {reiθ : θ ∈ (θ1,js , θ2,js)} .

We claim that there exists at least one pair of two consecutive segments, w.l.o.g. Jj1
+

and Jj2
+ , such that for the intermediate segment

I = {reiθ : θ ∈ (θ2,j1, θ1,j2)}

we have

δ :=

∫

I
V ∧ Vτ dτ 6= 0 .

Indeed, this follows immediately from the fact that the total change of phase of V
over all such intermediate segments equals πd by (2.13).

Next, set

I+ = {x ∈ I : v2(x) > 0} and I− = {x ∈ I : v2(x) < 0} .

From the definitions of Jjs
+ and δ it follows that

∫

I−

V ∧ Vτ = δ and

∫

I+

V ∧ Vτ = 0 . (2.16)

Furthermore, it is easy to see that
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(i) V (r exp(iθ2,j1)) = ±1 and V (r exp(iθ1,j2)) = −V (r exp(iθ2,j1)),

(ii) δ = ±π,

(iii) I ∩
κ−⋃
s=1

J ls
− 6= ∅, and there is an odd number of segments J

lσ1
− , . . . , J

lσ2k+1
− such

that J
lσi
− ⊂ I for every i = 1, . . . , 2k + 1 and some k ∈ N (see Figure 1).

v2 ≤ 0

v2 ≤ 0

v2 ≤ 0

v2 < 0

Ω−
1

J
lσ1−

J
lσ2−

J
lσ3−

J
lσ4−

J
lσ5− J

j1

+

ω+
j0

∂Br(0)

J
j2

+

Ω−
2

v2 < 0

v2 > 0

v2 > 0

Figure 1: In this example, there are five “negative segments”, J
lσ1
− , . . . , J

lσ5
− , between

the two “positive segments” Jj1
+ and Jj2

+ .

Consider the components Ω−
ζ(lσi)

corresponding to J
lσi
− for i = 1, . . . , 2k + 1 (see

(2.14)). We now claim that, for each i = 1, . . . , 2k + 1, the set Ω−
ζ(lσi)

satisfies

Ω−
ζ(lσi

) ∩ G− ⊂ I . (2.17)

Indeed, assume by negation that (2.17) doesn’t hold for some i. Then, there exists

a segment Jj
− ⊂ Ω−

ζ(lσi)
∩ (G− \ I). But this would imply the existence of a curve
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starting at a point on Jj
− and ending at a point on J

lσi
− whose interior is contained

in Ω−
ζ(lσi)

. The existence of such a curve clearly contradicts the connectedness of

ω+
j0

, and (2.17) follows.
Finally, we define the map ũ = ũ1 + iũ2 on Br(0) as follows. Set ũ1 = u1 and

ũ2(x) =





v2(x) x ∈
2k+1⋃
i=1

Ω−
ζ(lσi)

,

|v2(x)| otherwise .

From the above it follows that Ũ = ũ
|ũ| = Ũ1 + iŨ2 satisfies

∫

∂Br(0)
Ũ ∧ Ũτ = 2δ = ±2π .

Therefore, either ũ or its complex conjugate ũ1 − iũ2 has degree 1 as required.
Finally, we use the above construction to define a map ũ on R

2 possessing the
property stated in the proposition. Choose a sequence {Rn}∞n=1 with Rn → ∞, so
we may assume that Rn > R0 for all n. For each n we may find rn ∈ (Rn, Rn + 1)
satisfying (2.4) with r = rn and repeat the above construction to get a map ũ(n) ∈
W 1,p

(
Brn(0), R2

)
satisfying

ũ
(n)
1 (x) = u1(x) and

∣∣ũ(n)
2 (x)

∣∣ = |u2(x)|, ∀x ∈ Brn(0) , (2.18)

and deg
(
ũ(n), ∂Brn(0)

)
= 1. Note that (2.18) implies

|∇ũ(n)(x)| = |∇u(x)| , a.e. in Brn(0) . (2.19)

By (2.18)–(2.19) the sequence {ũ(n)} is bounded in W 1,p
loc (R2, R2), and by passing

to a subsequence we may assume that ũ(n) converges to a map ũ ∈ W 1,p
loc (R2, R2),

weakly in W 1,p
loc (R2, R2), hence also in Cloc(R

2, R2). Clearly, ũ satisfies the assertion
of the proposition.

By using exactly the same method, we can prove an analogous result for the
half-plane.

Proposition 2. Let D ≥ 2 be an integer. Then, for each u ∈ E+
D there exists ũ ∈ E+

1

such that Ep(ũ) = Ep(u), where

ũ1(x) = u1(x) and |ũ2(x)| = |u2(x)|, ∀x ∈ R
2 .

3 Existence of minimizers in R
2

In this section we study the existence of minimizers on R
2 and prove Theorem 1. The

main difficulty we face here is to show that the (weak) limit of a minimizing sequence
must satisfy the degree condition. Our main tool in overcoming this difficulty is
Proposition 1.
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Proof of Theorem 1. Clearly, without any loss of generality, we can consider the case
d = 1. Let {un}∞n=1 be a minimizing sequence in E1 for Ip(1), i.e.,

lim
n→∞

Ep(un) = Ip(1) .

By (2.2), there exists a constant λ0 > 0 such that,

|un(x0)| ≤
1

2
⇒ |un(x)| ≤ 3

4
, ∀x ∈ Bλ0(x0) , ∀n ∈ N . (3.1)

Consider the set

Sn =

{
x ∈ R

2 : |un(x)| ≤ 1

2

}
. (3.2)

Next, borrowing an argument from [5], we show that Sn can be covered by a finite
number of “bad disks”. Starting from a point x1,n ∈ Sn, we choose a point x2,n ∈ Sn\

B5λ0(x1,n) (if this set is nonempty) and then, by recurrence, xk,n ∈ Sn\
k−1⋃
j=1

B5λ0(xj,n)

(if this set is nonempty). This selection process must stop after a finite number of

iterations (bounded uniformly in n), because
∫

R2

(
1 − |un|2

)2 ≤ C, and the disks

{Bλ0 (xj,n)}k
j=1 are mutually disjoint at each step, while

∫

Bλ0
(xj,n)

(
1 − |un|2

)2 ≥ πλ2
0

16
, (3.3)

by (3.1).
Passing to a further subsequence (if necessary), we find that the number of disks

is independent of n, i.e.,

Sn ⊂
m⋃

j=1

B5λ0(xj,n) ,

where {xj,n}m
j=1 ⊂ Sn and the disks {Bλ0(xj,n)}m

j=1 are mutually disjoint. By re-
placing un(x) with un(x − x1,n), we may assume that

x1,n = 0 , ∀n ∈ N . (3.4)

From (2.2) and (3.4) it follows that {un} is bounded in Cα
loc(R

2, R2). Therefore,
by passing to a subsequence and relabeling, we may assume that {un} converges in
Cloc(R

2, R2) and weakly in W 1,p
loc (R2, R2) to a map u ∈ W 1,p

loc (R2, R2). By weak lower
semicontinuity and the local uniform convergence it follows that

Ep(u) ≤ lim
n→∞

Ep(un) = Ip(1) . (3.5)

It remains to show that u ∈ E1.
Let

R := sup
n≥1

max{|xj,n| : 1 ≤ j ≤ m} ∈ (0,∞] . (3.6)
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We distinguish two cases:

(i) R < ∞ .
(ii) R = ∞ .

In the case (i), we clearly have

|un(x)| ≥ 1

2
, |x| ≥ R + 5λ0, ∀n ∈ N .

By the local uniform convergence,

deg(u, ∂Br(0)) = deg(un, ∂Br(0)) = 1 ,

for each r ≥ R + 5λ0, i.e., u ∈ E1 and we conclude from (3.5) that u is a minimizer
for (1.2).

Next, we show that the case (ii) is impossible. Assume by negation that the case
(ii) holds. Then, by passing to a subsequence, we may assume the following: the
index set J = {1, . . . ,m} is a union of K ≥ 2 disjoint subsets, J1, . . . ,JK , such that
the (generalized) limit lj1,j2 := limn→∞ |xj1,n − xj2,n| ∈ (0,∞] exists for every pair
of distinct indices j1, j2 ∈ {1, . . . ,m} and

lj1,j2 < ∞ ⇐⇒ ∃k ∈ {1, . . . ,K} s.t. j1, j2 ∈ Jk .

For every k ∈ {1, . . . ,K} and each n we define

δk,n = max{|xj1,n − xj2,n| : j1, j2 ∈ Jk} . (3.7)

Note that ∆k = supn δk,n < ∞ for every k ∈ {1, . . . ,K}. For j ∈ {1, . . . ,m} we
denote by σ(j) the index in {1, . . . ,K} such that j ∈ Jσ(j). Defining

ρn = inf{|xj1,n − xj2,n| : j1, j2 ∈ {1, . . . ,m} s.t. σ(j1) 6= σ(j2)} ,

we have limn→∞ ρn = ∞.

Fix any k ∈ {1, . . . ,K} and any jk ∈ σ−1(k). Define the sequence
{
v
(k)
n

}
by

v
(k)
n (x) = un(x + xjk,n). For any r1 > 0 we have r1 < ρn/2 for a sufficiently large

n ∈ N. If we take r1 > ∆k, then the degree dk,n = deg
(
v
(k)
n , ∂Br(0)

)
does not

depend on r for r1 < r < ρn/2. Passing to a further subsequence, we may assume

that dk,n = dk for all n ∈ N and further, that v
(k)
n → vk in Cloc(R

2, R2) and weakly

in W 1,p
loc (R2, R2), for some vk ∈ Edk

. In case dk 6= 0 we have

Ip(dk) ≤ Ep(vk) . (3.8)

Note that (3.8) is obviously true when dk = 0 because Ip(0) = 0. However, thanks
to (3.3), we have that

πλ2
0

32
≤ Ep(vk) . (3.9)
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Set
K = {k ∈ {1, . . . ,K} : dk 6= 0} ,

and denote its complement in {1, . . . ,K} by Kc. Note that by the properties of the
degree

1 =

K∑

k=1

dk =
∑

k∈K
dk ,

so that, in particular, K 6= ∅. By weak lower semi-continuity, the aforementioned
convergence, and (3.8)–(3.9) we obtain

|Kc|πλ2
0

32
+
∑

k∈K
Ip(dk) ≤

∑

k∈K

Ep(vk) ≤ lim
n→∞

Ep(un) = Ip(1) . (3.10)

Using Proposition 1 in (3.10) yields

|Kc|πλ2
0

32
+ |K|Ip(1) ≤ Ip(1) ,

from which it is clear that Kc = ∅ and thus K must be a singleton, i.e., K = 1—a
contradiction.

4 Limiting behaviour of global minimizers when p → 2

Throughout this section we denote by up a global minimizer realizing Ip(1) for p > 2
(the existence is guaranteed by Theorem 1) satisfying

up(0) = 0 . (4.1)

The condition (4.1) can always be fulfilled by an appropriate translation. The fol-
lowing proposition is needed in Section 5 where we study the existence problem for
minimizers on R

2
+.

Proposition 3. Let {up}p>2 be a family of minimizers satisfying (4.1). Then, for

every sequence pn → 2+ we have, up to a subsequence,

upn ⇀ ũ weakly in H1
loc(R

2) , (4.2)

where ũ is a degree-one solution of the classical Ginzburg-Landau equation

−∆ũ = (1 − |ũ|2)ũ . (4.3)

on R
2. Furthermore,

lim
p→2+

∫

R2

(
1 − |up|2

)2
= 2π . (4.4)

To prove this proposition we need the following Pohozaev-type identity that will
also be used later on in § 5.
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Lemma 4.1. For every p > 2 we have

∫

R2

(
1 − |up|2

)2
=

2(p − 2)

p
Ip(1) . (4.5)

Proof. Let λ > 0 and set wλ(x) = up(λx) and

F (λ) := Ep(wλ) = λp−2

∫

R2

|∇up|p +
1

2λ2

∫

R2

(1 − |up|2)2 .

Since F has a local minimum at λ = 1, we must have F ′(1) = 0. Thus

(p − 2)

∫

R2

|∇up|p =

∫

R2

(
1 − |up|2

)2
,

and (4.5) follows.

An upper bound for Ip(1) is given by the next lemma.

Lemma 4.2. We have

Ip(1) ≤
2π

p − 2
+ 3π , ∀p > 2 . (4.6)

Proof. Define a function f(r) by

f(r) =

{
r√
2
, 0 ≤ r ≤

√
2 ,

1,
√

2 < r .

A direct computation gives

Ip(1) ≤ Ep(feiθ) ≤ 3π + 2π

∫ ∞

√
2

r1−p dr = 3π + 2π
21−p/2

p − 2
,

and (4.6) follows.

Remark 4.1. Although our main interest is in the limit p → 2, we note that the
result of Lemma 4.2 provides a uniform bound in the limit p → ∞ as well.

Proof of Proposition 3. First, we show that the maps {up}p>2 are uniformly bounded
in H1

loc(R
2). The Euler-Lagrange equation associated with (1.1) is

p

2
∇ · (|∇up|p−2∇up) + up(1 − |up|2) = 0 . (4.7)

Let η ∈ C∞
0 (R+, [0, 1]) be a cutoff function satisfying

η(r) =

{
1 r < 1

2

0 r > 1
|η′| ≤ 4 . (4.8)

13



Fix any x0 ∈ R
2. Using the identity

∇up∇(η2up) = |∇(ηup)|2 − |up|2|∇η|2 ,

we obtain, upon multiplying (4.7) by η2(|x − x0|)up(x) and integrating over R
2,

∫

B1/2(x0)
|∇up|p ≤

∫

B1(x0)
|∇up|p−2|∇(ηup)|2

=

∫

B1(x0)
|∇η|2|up|2|∇up|p−2 +

2

p

∫

B1(x0)
η2|up|2(1 − |up|2) .

Since we have ‖up‖∞ ≤ 1 for every p (otherwise, replacing up(x) by
up(x)
|up(x)| on the

set {x : |up(x)| > 1} would yield a map with a lower energy), we conclude, using
the Hölder inequality, that

∫

B1/2(x0)
|∇up|p ≤ C

(
1 +

( ∫

B1(x0)
|∇up|p

)(p−2)/p
)

. (4.9)

Here and for the remainder of the proof, C denotes a constant independent of p > 2.
Inserting (4.6) into (4.9) yields

∫

B1/2(x0)
|∇up|p ≤ C

(
(p − 2)−(p−2)/p + 1

)
,

hence ∫

B1/2(x0)
|∇up|p ≤ C,

uniformly in p > 2. Applying the Hölder inequality once again and using a covering
argument we find that

∫

BR(0)
|∇up|2 ≤ C(R) , ∀p > 2 , ∀R > 0 . (4.10)

Thanks to (4.10), there exists a sequence pn → 2+ such that upn ⇀ ũ weakly in
H1

loc(R
2). We now verify that ũ satisfies (4.3). To this end, choose an arbitrary test

function φ ∈ C∞
c (R2). By (4.7) we have for each n,

∫

R2

pn

2
|∇upn |pn−2∇upn∇φ =

∫

R2

upn(1 − |upn |2)φ . (4.11)

Using (4.10) and the Rellich-Kondrachov compact embedding theorem, we deduce
that {upn} is relatively compact in Lq

loc(R
2) for every q > 2. By passing, if necessary,

to a further subsequence, we then deduce that

lim
n→∞

∫

R2

upn(1 − |upn |2)φ =

∫

R2

ũ(1 − |ũ|2)φ . (4.12)
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Next, we claim that

lim
n→∞

∫

R2

pn

2
|∇upn |pn−2∇upn∇φ =

∫

R2

∇ũ∇φ . (4.13)

Clearly, (4.13) would follow if we can show that

lim
n→∞

∫

R2

(
|∇upn |pn−2 − 1

)
∇upn∇φ = 0 . (4.14)

For any p > 2 define the function

gp(t) =
∣∣tp−2 − 1

∣∣t on t ∈ [0,∞) . (4.15)

An elementary computation shows that, for any β > 1,

max
t∈[0,β]

gp(t) = max

{
gp(β), gp

(( 1

p − 1

) 1
p−2

)}
→ 0, as p → 2 .

It follows that

lim
n→∞

∫

{|∇upn(x)|≤β}

(
|∇upn |pn−2 − 1

)
∇upn∇φ = 0 . (4.16)

Let R > 0 be such that
supp(φ) ⊂ BR(0)

and set
An,β = {x ∈ BR(0) : |∇upn(x)| > β} .

By (4.10), we have

µ(An,β) ≤ C(R)

β2
.

Therefore,

∣∣∣
∫

An,β

(
|∇upn |pn−2 − 1

)
∇upn∇φ

∣∣∣ ≤ C(R)

∫

An,β

(
|∇upn |pn−1 + |∇upn |

)

≤ C(R)
( ∫

BR(0)
|∇upn |2

)pn−1
2 µ(An,β)

3−pn
2 ≤ C(R)βpn−3 . (4.17)

Since we may choose β to be arbitrary large, we deduce (4.14) from (4.16)-(4.17)
and (4.13) follows. Consequently, (4.3) follows from (4.12)–(4.13).

Finally, we need to identify the degree of ũ. Combining Lemma 4.1 with Lemma 4.2
we get that

lim sup
n→∞

∫

R2

(1 − |upn |2)2 ≤ 2π .

Since upn → ũ in L4
loc(R

2), we obtain

∫

R2

(1 − |ũ|2)2 ≤ 2π .
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From the quantization result of [7] it follows that there are only two possibilities

∫

R2

(1 − |ũ|2)2 = 2π or 0 , (4.18)

corresponding to the degrees ±1 or 0, respectively.
We now establish an improved regularity result for {up}. We make use of The-

orem 4.1 in [9]. While it is not clearly stated there, it is possible to verify by
examining the proof provided in [9] that all of the estimates in [9] are uniform in p
when p → 2+. It follows that there exists a q > 2 and a constant C > 0 such that

∫

B1(y)
|∇upn |q ≤ C , (4.19)

for each n and for each disk B1(y) in R
2. From (4.19) and Morrey’s lemma we

deduce that

|upn(x) − upn(y)| ≤ C|x − y|1−2/q , ∀x, y ∈ R
2 , ∀n ∈ N , (4.20)

i.e., the family {upn} is equicontinuous on R
2. Therefore, ũ(0) = 0, the integral

in (4.18) cannot vanish, and (4.4) follows. Finally, using the equicontinuity again,
deg(ũ) = 1.

Combining (4.4) with (4.5) we obtain the following result.

Corollary 4.1. We have

lim
p→2+

(p − 2) Ip(1) = 2π

and

lim
p→2+

Ip(1) = ∞ .

5 Existence of minimizers in R
2
+

In this section we study the problem of existence of minimizers in R
2
+ under the

degree condition at infinity. In contrast with the case of the entire plane, here we
are only able to prove the existence of minimizers of degree ±1 when p is restricted
to some right semi-neighborhood (2, p0) of p = 2. A major difference between the
two cases is due to the different asymptotic behaviour of the energies when p → 2+.
While in the R

2-case the energy blows up in that limit, i.e., limp→2+ Ip(1) = +∞
(Corollary 4.1), in the R

2
+-case the energy I+

p (1) remains bounded when p → 2+.
The latter result is demonstrated in the following lemma.

Lemma 5.1. We have limp→2+ I+
p (1) = 2π.
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Proof. Let

uλ(z) =
z − λi

z + λi
,

where 0 < λ ≤ 1/2 and z = x1+ix2. We obtain an upper bound for lim supp→2+ I+
p (1)

by introducing a smooth test function satisfying

ũλ(z) =

{
uλ, |z| ≤ 1,

1, |z| ≥ 2,
and |∇ũλ(z)| ≤ Cλ , 1 ≤ |z| ≤ 2 ,

for λ < 1/2. As uλ is a conformal mapping of R
2
+ on B1(0), we have

∫

R
2
+

|∇uλ|2 = 2π .

Hence,

lim
λ→0

∫

R
2
+

|∇ũλ|2 = 2π .

As 1 − ũλ is compactly supported, we have

lim
λ→0+

lim
p→2+

Ep(ũλ) = 2π ,

from which we obtain that lim supp→2+ I+
p (1) ≤ 2π.

Next, we prove the lower bound. Fix any u ∈ E+
1 (see (1.4)) and for each

β ∈ (0, 1) set
Ωβ = {x ∈ R

2
+ : |u(x)| < β} .

Clearly,

Ep(u) ≥ 1

2

∫

Ωβ

(
1 − |u|2

)2 ≥ 1

2

(
1 − β2

)2
µ(Ωβ) ,

and hence

µ(Ωβ) ≤ 2Ep(u)

(1 − β2)2
. (5.1)

Consider any connected component ω of Ωβ. If ω contains a point x0 where u(x0) = 0
then Br(x0) ⊂ ω for some r > 0, which depends only on the modulus of continuity of
u. It follows in particular that the number of the components ω with deg(u, ∂ω) 6= 0
is finite. Denoting the union of these components by A, we obtain that the image
of A under u is the disk Bβ(0), hence

∫

Ωβ

|∇u|2 ≥
∫

A
|∇u|2 ≥ 2

∫

A
ux1 ∧ ux2 ≥ 2πβ2 . (5.2)

The Hölder inequality implies that

∫

Ωβ

|∇u|p ≥

(∫
Ωβ

|∇u|2
)p/2

µ(Ωβ)(p−2)/2
. (5.3)
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Combining (5.1), (5.2), and (5.3) we obtain

Ep(u) ≥
∫

Ωβ

|∇u|p ≥ (2π)p/2(1 − β2)p−2βp

(2Ep(u))(p−2)/2
.

Consequently,

Ep(u) ≥ 2
2
p πβ2(1 − β2)

2(p−2)
p .

Letting p → 2, we obtain

lim
p→2+

Ep(u) ≥ 2πβ2 , ∀β < 1 ,

and the desired lower bound follows.

Proof of Theorem 2. By Corollary 4.1 and Lemma 5.1 there exists a p0 > 2 such
that

I+
p (1) < Ip(1) , ∀p ∈ (2, p0) . (5.4)

Next, we show that the theorem holds with this value of p0, thus we assume in the
sequel that p ∈ (2, p0). As in the proof of Theorem 1, we consider a minimizing
sequence {un} for I+

p (1). Our argument is very similar to the one used in the proof
of Theorem 1, with the only new difficulty related to the possibility of a “vortex”
whose distance to ∂R

2
+ goes to infinity with n. The equation (5.4) is needed precisely

in order to exclude this possibility.
As in (3.2) we set for each n

Sn =

{
x ∈ R

2
+ : |un(x)| ≤ 1

2

}
.

With λ0 defined as in (3.1), we can find (along the lines of the proof of Theorem 1)
a collection of mutually disjoint disks {Bλ0/5(xj,n)}m

j=1 such that

{xj,n}m
j=1 ⊂ Sn and Sn ⊂

m⋃

j=1

Bλ0(xj,n) ,

where m is independent of n (upon passing to a further subsequence, if necessary).
In what follows, the coordinates of xj,n are denoted by (xj,n)1 and (xj,n)2. Note
that Bλ0(xj,n) ⊂ R

2
+ because of (3.1) and the boundary condition (1.3).

Next, we divide the index set J = {1, . . . ,m} into K ≥ 1 disjoint subsets
J1, . . . ,JK so that the distance |xj1,n − xj2,n| remains bounded as n goes to ∞ if
and only if j1 and j2 belong to the same Ji (cf. Theorem 1). Now we can subdivide
the index set {1, . . . ,K} into two disjoint subsets:

K1 = {k : (xj,n)2 → ∞ , j ∈ Jk} ,

K2 = {k : {(xj,n)2}∞n=1 is bounded , j ∈ Jk} .
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Note that one of the sets K1,K2 may be empty. By passing to a subsequence we
may further assume that limn→∞(xj,n)2 exists for every k ∈ K2 and j ∈ Jk. For
each k ∈ {1, . . . ,K} we fix an arbitrary jk ∈ Jk and define

v(k)
n (x) = un(x + xjk,n) on Ajk,n := R

2
+ − xjk,n .

Consider first the case k ∈ K1. Then, the limit of the sets {Ajk,n}n≥1, as n → ∞,
is R

2. Further, there exists an R > 0 such that, for every r ≥ R, the degree

dk,n = deg(v
(k)
n , ∂Br(0)) does not depend on r and n and may be denoted by dk.

This statement follows (for a subsequence) from the equicontinuity of {v(k)
n }∞n=1 on

∂BR(0). Passing to a further subsequence, we obtain that v
(k)
n → vk in Cloc(R

2, R2),
and weakly in W 1,p

loc (R2, R2), where the map vk ∈ Edk
. Clearly

sup
R>0

lim
n→∞

Ep

(
v(k)
n ;BR(0)

)
≥ sup

R>0
Ep(vk;BR(0)) = Ep(vk)

≥ min

(
Ip(dk),

πλ2
0

32

)
.

(5.5)

Here

Ep(u;D) :=

∫

D
|∇u|p +

1

2
(1 − |u|2)2 ,

for every D ⊂ R
2.

When k ∈ K2 the limit of {Ajk,n}n≥1, as n → ∞, is the half-plane

Ht = {y ∈ R
2 : y2 > t} with t = − lim

n→∞
(xj,n)2 .

Similar to the previous case, for r ≥ R, we find that

dn,k = deg
(
v(k)
n , ∂ (Br(0) ∩ Ajk,n)

)
= dk,

is independent of r and n. As in (5.5) we obtain

sup
R>0

lim
n→∞

Ep

(
v(k)
n ;BR(0) ∩ Ajk,n

)
≥ sup

R>0
Ep (vk;BR(0) ∩ Ajk,n)

≥ min

(
I+
p (dk),

πλ2
0

32

)
.

(5.6)

Obviously, by construction,
K∑

k=1

dk = 1 . (5.7)

Using (5.5)–(5.6) we deduce that

I+
p (1) = lim

n→∞
Ep(un) ≥

∑

k∈K1

min

(
Ip(dk),

πλ2
0

32

)
+
∑

k∈K2

min

(
I+
p (dk),

πλ2
0

32

)
. (5.8)
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By Proposition 1 and (5.4) we have

Ip(d) ≥ Ip(1) > I+
p (1) , ∀d 6= 0 ,

which together with (5.8), (5.7), and Proposition 2 gives

K1 = ∅ and K2 = {k0} .

Furthermore, it follows that dk0 = 1. Choosing j0 ∈ Jk0 and defining a new sequence
by

ũn(x) = un(x + (xj0,n)1) , n ≥ 1 ,

we conclude (again, after passing to a subsequence) that

ũn → u in Cloc(R
2
+, R2) and ũn ⇀ u weakly in W 1,p

loc (R2
+, R2) .

It follows that u ∈ E+
1 and Ep(u) = I+

p (1).

We conclude this section by providing an upper bound for the distance of the
zeros of a minimizer from ∂R

2
+.

Proposition 4. For p ∈ (2, p0), let vp denote a minimizer realizing the minimum

in (1.5). Let vp(xp) = 0 and assume w.l.o.g. that xp = (0, rp). Then, there exists a

positive constant C such that

rp < C(p − 2)1/2 , ∀p ∈ (2, p0) . (5.9)

Proof. For each p ∈ (2, p0) we set r̃p = min(rp, 1) and define a rescaled map ṽp(x)
on B1(0) by

ṽp(x) = vp(r̃px + xp) .

From the identity

r̃2−p
p

∫

B1(0)
|∇ṽp|p + r̃2

p

∫

B1(0)

1

2
(1 − |ṽp|2)2 = Ep(vp;Br̃p(xp)) ,

it follows that ṽp is a minimizer for the energy

Ẽp(v) =

∫

B1(0)
|∇v|p + r̃p

p

∫

B1(0)

1

2
(1 − |v|2)2 ,

over the maps v ∈ W 1,p(B1(0), R
2) satisfying v = ṽp on ∂B1(0). By Lemma 5.1 we

have ∫

B1(0)
|∇ṽp|p = r̃p−2

p

∫

Br̃p(xp)
|∇vp|p ≤

∫

Br̃p(xp)
|∇vp|p ≤ C ,

so we can again apply the same method as in the proof of the Giaquinta-Giusti
regularity result from [9] in order to deduce a uniform bound for the Hölder semi-
norm

[ṽp]Cβ(B1/2(0)) ≤ c0 ,
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with β = 1 − 2/q for some q > 2. Rescaling back we get

[vp]Cβ(Br̃p/2(xp)) ≤
c0

r̃β
p

. (5.10)

It follows from (5.10) that

|vp(x)| ≤ c0

r̃β
p

|x − xp|β , x ∈ Br̃p/2(xp) ,

and we deduce easily that

∫

R
2
+

(1 − |vp|2)2 ≥
∫

Br̃p/2(xp)
(1 − |vp|2)2 ≥ c1r̃

2
p , (5.11)

for some positive constant c1.
Finally, we note that the Pohozaev identity (4.5) also holds for minimizers on

R
2
+, i.e., ∫

R
2
+

(1 − |vp|2)2 =
2(p − 2)

p
I+
p (1) . (5.12)

Combining (5.11)–(5.12) with Lemma 5.1 yields (5.9).
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Birkhäuser, 2004.

[6] H. Brezis, Analyse fonctionnelle, Collection Mathématiques Appliquées pour
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